Go to Home

 

Cutting into Planet Layers
January 28, 2007
NASA's powerful Hubble Space Telescope has allowed astronomers to study for the first time the layer-cake structure of a planet orbiting another star. .

Rosetta Locks on Target
January 28, 2007
ESA's Rosetta spacecraft has caught its first glimpse of an asteroid it will be studying later during its primary mission.

Starlight Meteorology
January 26, 2007
Observations of Saturn's moon Titan from earth-based telescopes played a vital role in the successful decent of the Huygens probe through Titan's thick atmosphere in January of 2005.

Opening an Eye to the Stars
January 26, 2007
The COROT telescope has successfully opened its protective cover and began gazing at the stars.

Huygens's Second Landing Anniversary
January 16, 2007
Two years ago, scientists accomplished an amazing feat when the Huygens probe descended through the thick atmosphere of Titan to reveal the moon's unique surface.

Swooping Under the Sun
January 10, 2007
The Ulysses spacecraft has reached maximum latitude in its exploration of the heliosphere, the bubble in space blown out by the solar wind.

Water Flows Today on Mars
December 7, 2006
Water could recently have flowed on the Martian surface. ESA's Mars Express joins the hunt for evidence.

Rocky Worlds
November 3, 2006
COROT space telescope set to search out small, rocky extrasolar planets.

  • New Space Telescope
  • November 3, 2006
  • COROT space telescope set to search out small, rocky extrasolar planets.

 

Summary : The COROT telescope has successfully opened its protective cover and began gazing at the stars. In February COROT will officially begin scientific observations, which include the search for extra-solar planets.

Huygens's Second Landing Anniversary

Based on the ESA release


Two years ago, planetary scientists across the world watched as Europe and the US did something amazing. The Huygens descent module drifted down through the hazy atmosphere of Saturn's moon Titan, beaming its data back to Earth via the Cassini mothership. Today, Huygens's data are still continuing to surprise researchers.

Shoreline horizon during descent to Titan.Credit: ESA

Titan holds a unique place in the Solar System. It is the only moon covered in a significant atmosphere. The atmosphere has long intrigued scientists as it may be similar to that of the early Earth but the deeper mystery was: what lies beneath the haze?

DISR view of Titan's surface from 8 kilometres altitude The European Space Agency built the Huygens spacecraft to find out. The probe, carrying scientific investigations involving both sides of the Atlantic, hitched a ride on NASA's Cassini spacecraft. Together Cassini and Huygens make an unprecedented joint space mission - as a major milestone, Huygens parachuted to the surface of Titan on 14 January 2005.

While Cassini keeps flying by this moon of Saturn collecting new amazing data, one can say that the data collected by Huygens's six instruments during its 2.5-hour descent and touch-down have provided the most spectacular view of this world yet and first dramatic change in the way we now think about it.

"When you put all the data together, we get a very rich picture of Titan," says AthÚna Coustenis, Observatoire de Paris, France, "The Descent Imager/Spectral Radiometer (DISR) pictures were an enormous surprise. We had expected a much smoother landscape." Instead, they saw a varied landscape of channels that had been formed by some kind of flowing liquid.

Titan's pebbles

"At the landing site we also saw rounded ice pebbles," says Jonathan Lunine, University of Arizona. The Surface Science Package (SSP) provided the final piece in this particular puzzle. The impact it detected when Huygens touched down indicated that the spacecraft had come to rest in compacted gravel. "Put it all together and it is clear that Huygens landed in an outflow wash," says Lunine.

Icy pebbles on Titan.
Credit: ESA

The Gas Chromatograph and Mass Spectrometer (GCMS) instrument confirmed the nature of the liquid that shapes the surface of Titan. It detected methane evaporating from the Huygens landing site. "Methane on Titan plays the role that water plays on Earth," concludes Lunine. But there are still mysteries. It is not yet clear whether the methane falls mostly as a steady drizzle or as an occasional deluge.

The GCMS also detected two isotopes of argon. Both have important stories to tell. The Ar40 indicates that the interior of Titan is still active. This is unusual in a moon and indicates that perhaps an insulating layer of water ice and methane is buried in the moon itself, close to the surface, trapping the heat inside it. Occasionally, this heat causes the so-called cryo-volcanoes to erupt. Icy 'lava' flows from these cryo-volcanoes have been seen from the orbiting Cassini spacecraft. Because Ar40 is so heavy, it is mostly concentrated towards the base of the atmosphere, so having Huygens on the surface was essential for its detection.

Daniel Gautier, Observatoire de Paris, France, thinks that the other isotope, Ar36, is telling scientists that Titan formed after Saturn, at a time when the primeval gas cloud that became the Solar System had cooled to about 40 ║K (-233 ║C).

Huygens descent and landing

The atmosphere of Titan held surprises too. "Huygens made a fantastic and unexpected discovery about the wind," says Gautier. At an altitude of around 60 kilometres, the wind speed dropped, essentially to zero. Explaining this behaviour presents a challenge for theoreticians who are developing computer models of the moon's atmospheric circulation.

The Huygens Atmosphere Structure Instrument (HASI) provided the temperature of the atmosphere from 1600 kilometres altitude down to the surface. "This has helped put all the other data into context," says Coustenis. Huygens measured the composition profile of the atmosphere to be a mixture of nitrogen, methane and ethane. The methane and ethane provide humidity, as water does in Earth's atmosphere. At the surface of Titan, Huygens measured the temperature to be 94 ║K (-179 ║C) with a humidity of 45 percent.

This colorized radar view from Cassini shows lakes on Titan. Color intensity is proportional to how much radar brightness is returned. The colors are not a representation of what the human eye would see.
Image credit: NASA/JPL/USGS

Liquid Lakes on Titan

Even though the Huygens data set is now two years old, the discoveries have not yet stopped. "There are lots of surprises still to come from this data," says Francesca Ferri, UniversitÓ degli Studi di Padova. In addition, Huygens gives planetary scientists a wealth of 'ground-truth' to complement and help interpret the observations still coming from Cassini. At the beginning of 2007, Cassini showed that liquid methane is present on Titan in lakes.

Cassini, whose experiments also see a joint US and European participation, will make another 22 fly-bys of Titan - the first on 13 January - between now and the end of its scheduled mission in the summer of 2008. The Cassini-Huygens scientists are discussing their options to extend the mission. One idea, says Christophe Sotin, UniversitÚ de Nantes, France, would be to use Cassini to study the newly discovered lakes.

Huygens has exceeded expectations and shown Titan to be an 'alien earth', giving planetary scientists a new world of fascination to explore.

Inside
Features
Interviews
Retrospections
Events
oped
oped