Roving the AMASEing Arctic

Set Up and Ready to Start

by Adrienne Kish
August 4, 2009

Adrienne Kish


Today saw the transformation of bare labs and storage warehouses into fully equipped biology and biogeochemistry facilities and Mars rover assembly rooms. True to the adventure of space exploration, most teams had to deal with parts missing or malfunctioning, resulting in some inspired MacGyver solutions. Alternatives were found, packages located, and sciences moved along. When you are working in a remote area far from civilization, or on Mars for that matter, you work with what you have and deal with the challenges as they arise. The show must go on, and so does the science. The peace and quiet of Ny-Alesund was periodically disturbed by the arrival of cruise ships chock full of ecotourists packing zoom lenses the length of their arms coming to view the quaint scientists and colorful buildings. Just wait until a cruise ship docks and sees a Mars rover picking up rocks–it’ll be a paparazzi outbreak that will make people wonder if Paris Hilton was visiting the arctic. We are now set up and ready to start hauling in the samples and putting the instruments to work.

Arrival at Svalbard

by Juan D. Rodriguez
August 5, 2009

Juan Diego Rodriguez.

This is my first post to the blog about AMASE 2009. I am writing it from the Spitzbergen Guest house, a nice little accommodation place located in Nybyen at the southeast end of Longyearbyen (Svalbard), the place where part of the members of the AMASE expedition are staying before flying to Ny-Alesund today. I am writing this blog while lying on bed because I am very tired…after a full week of work… however, the start of this trip could not have been better.

From the window of my room I can see some mountains and the front of a glacier. It is 11 pm and it is sunny but with high clouds. The landcape is strange, quite evocative: big mountains, ice, old mining settlements — almost all of them abandoned — next to a place where the population is about five hundred people and you have to take a rifle with you if you go outside the town in case you need to defend against polar bears.

It has been a very long day and a very long trip. Liane Benning, one of the AMASE managers and my boss at the University of Leeds, and I came here by plane from Heathrow via Stavanger, Oslo, and Tromso and finally arrived at Longyearbyen after almost one day flying and only a little bit of sleeping. In fact we didn’t come directly from our homes, but from the Diamond Synchrotron in Oxfordshire (UK), where we were working five days and nights carrying out experiments to understand the formation of calcium carbonates, minerals that are very important in biomineralization processes. But now we are here and we will have a couple of more relaxed days to prepare for AMASE before joining everybody and starting our work.

Svalbard from the air.
Credit: Juan Diego Rodriguez

Svalbard is amazing from the air. When we were approaching it by plane we could see the impressive mountains, glaciers and lakes partially covered by clouds. Sometimes it seems to be like the surface of another world. However, it is not so far away today if we consider that we only needed one day of travel to get here. A couple of years ago I read a very good book written by Fridtjof Nansen, a Norwegian explorer who commanded a scientific expedition to the Arctic between 1893 and 1896 and reached latitude 84°N, following a route that went through Svalbard. He described the beauty of this landscape, the long polar nights only illuminated by the Moon and the northern lights, the impressive mountains, the loneliness and strangeness of the regions they visited. Today, more than one century later, we can travel to Svalbard by plane while reading a book and drinking a Coke. However, that does not mean that Svalbard has changed: it is still cold, isolated, beautiful and strange as it was a century ago. We simply have used science to develop methods to travel faster and more comfortable. Our goals are further away, the landscapes that we would like to visit, explore and understand are now also away from Earth on other planets. One of them is planet Mars.

I have come to Svalbard to join the AMASE expedition: a group of really great scientists and engineers that have the same spirit as Fridtjof Nansen and are here to carry out the first steps towards the advanced exploration of planet Mars. Over the years human kind have sent orbiters and landers to the Red Planet to understand its origin and evolution, to obtain information about its geology and climate but also to try to answer the question about the possible ocurrence of life. In fact nowadays we have the technology to go to Mars, both via unmanned and manned missions and although not easy this is nowadays not impossible: we only need some time and interdisciplinary collaboration. Today we know that liquid water existed on Mars millions of years ago. We have located very interesting candidate areas to look for present or past microbial life using orbiters that read the spectroscopic signatures of carbonates and other minerals and water. We have explored regions where water was present in past times, using rovers that have travelled kilometers while obtaining enormous amounts of data. But we don’t know at all if microbial life developed or even exists nowadays on our neighbour planet. This question remains unanswered and AMASE expedition is going to be crucial to answer it.

Martian gullies on Earth!
Credit: Juan Diego Rodriguez

AMASE has the objective of learning how to search for life on Mars and how to develop and test the appropriate technology to do so. We just need a place that can be considered a good martian analogue, and Svalbard is one of the best ones in the world. Here we will test equipment that will fly in future Mars missions, especially on board of the Mars Science Laboratory (NASA) and ExoMars (ESA) rovers. Obviously there is life in Svalbard, but in some areas the conditions are so harsh that only extremophiles can thrive in on basaltic, carbonate-rich rocks or in glacial ice, a picture that could be similar to equatorial martian basalts or the icy regions of the Red Planet. If we want to search for life on Mars we need to develop and test protocols to find past and present habitable environments and to avoid biological contamination that could arrive to Mars from our planet or could come back from Mars to us in any Mars Sample return Mission. AMASE is developing the systems to search for life and prevent contaminations. In fact, all this research is not only focused on that planet, but also in any other icy planetary bodies that could potentially harbor microbial life, like Europa, Titan or Enceladus.

During the next days I will start posting blog entries explaining how the expedition is going on, what we do, how we work and why we do what we do on AMASE. I will try to give you a vision of the research we are carrying out and the big picture we learn from it. Stay tuned and join the trip with us.