spacer
 
Advanced Search
Astrobiology Magazine Facebook  Astrobiology Magazine Twitter
  
Expeditions Microscopic Worms Could Open Up Deep Space
Microscopic Worms Could Open Up Deep Space
Source: University of Nottingham press release
print PDF
Moon to Mars
Posted:   06/04/11

Summary: A space flight by microscopic worms could help humans overcome the health threats posed by space travel.


C. elegans have been travelers on a number of space missions. The images above show worms recovered from the debris of the Columbia space shuttle disaster. They were part of an experiment studying the growth and reproductive behavior of the nematode worm. Image Credit: NASA
A space flight by millions of microscopic worms could help us overcome the numerous threats posed to human health by space travel. The Caenorhabditis elegans (C. elegans) have also given experts an insight into how to block muscle degradation in the sick and elderly.

The worms — from The University of Nottingham — were flown into space onboard the Space Shuttle Atlantis. They spent 11 days in orbit onboard the International Space Station more than 200 miles above the earth.

Many of C. elegans’ 20,000 genes perform the same functions as those in humans. Experts in human physiology from the School of Graduate Entry Medicine wanted to study the effectiveness of RNA interference (RNAi), a tried and tested technique which regulates gene expression in diseased tissue, and whether this technique could be employed to reduce or control the dramatic muscle loss experienced by astronauts during spaceflight.

The results of this research, published June 1 in the journal PLoS ONE, have shown that RNAi, which is already the subject of more than a dozen clinical trials to target illnesses ranging from cancer to asthma, functions normally in space flight and could be used as a viable option to treat and control muscle degradation in spaceflight. Their discovery will not only be of interest to astronauts but will also help people who suffer from muscle wasting caused by illness and old age.

Dr Nathaniel Szewczyk from the Division of Clinical Physiology said: “It was really a quite straightforward experiment. Once the worms were in space the scientists onboard the International Space Station treated them with RNAi and then returned them to us for post flight analysis. These results are very exciting as they provide a valuable experimental tool for spaceflight research and clearly demonstrate that RNAi can be used effectively to block proteins which are needed for muscle to shrink.”

Above are eleven sample bags which each contain between 100 and 10,000 C. elegans worms that were carried to space by a Russian Soyuz rocket as part of the ICE-FIRST experiment. C. elegans is a model organism for spaceflight, and the worms have continued contributing to space science as part of the Japanese CERISE payload. Image Credit: ICE-FIRST
During the flight a series of experiments were carried out by Japanese scientists onboard the International Space Station. When the flight samples were returned to Nottingham the results were analysed by Dr Timothy Etheridge, in the Division of Clinical Physiology.

Timothy Etheridge said: “We were very pleased that, given the numerous problems associated with conducting research in space, our experiments went as planned and allowed us to demonstrate that this form of gene therapy works effectively during spaceflight. The unexpected finding that RNAi can effectively block protein degradation in muscle in space was also a very welcome surprise.”

The experiment was part of the Japanese CERISE payload and funded as parts of a $1m (£0.6m) United States National Institute of Health grant to investigate the genetic basis of muscle atrophy and a £0.5m Medical Research Council grant to investigate how physical forces prevent muscle wasting. The recently installed Kibo lab is being used for the study of biomedicine and material sciences making use of the weightless conditions experienced in orbit.

Biological experiments in space need life support — oxygen, temperature control and pressure — so competition for space on manned flights is fierce and in short supply.

The origins of Dr Szewczyk’s worms can be traced back to a rubbish dump in Bristol. C. elegans often feed on bacteria that develop on decaying vegetable matter.


Related Stories

Astrobiology Roadmap Goal 6: Life's future beyond Earth

Amphibians and Astronaut Antibodies
Space Adventures Wants to Fly You to the Moon
Columbia Survivors
About Us
Contact Us
Links
Sitemap
Podcast Rss Feed
Daily News Story RSS Feed
Latest News Story RSS Feed
Learn more about RSS
Chief Editor & Executive Producer: Helen Matsos
Copyright © 2014, Astrobio.net