spacer
 
Advanced Search
Astrobiology Magazine Facebook  Astrobiology Magazine Twitter
  
Retrospections Kepler Confirms 26 ExoPlanets in 11 Solar Systems
 
Kepler Confirms 26 ExoPlanets in 11 Solar Systems
Source: NASA press release
print PDF
New Planets
Posted:   01/27/12

Summary: NASA's Kepler mission has discovered 11 new planetary systems hosting 26 confirmed planets. The discoveries nearly double the number of verified planets and provide new data in the search for habitable, extrasolar worlds.

NASA’S Kepler announces 11 planetary systems hosting 26 planets

An artist's rendition of the Kepler spacecraft as it searches distant stars for planets. Credit: NASA/Kepler mission/Wendy Stenzel
NASA’s Kepler mission has discovered 11 new planetary systems hosting 26 confirmed planets. These discoveries nearly double the number of verified planets and triple the number of stars known to have more than one planet that transits, or passes in front of, the star. Such systems will help astronomers better understand how planets form.

The planets orbit close to their host stars and range in size from 1.5 times the radius of Earth to larger than Jupiter. Fifteen are between Earth and Neptune in size. Further observations will be required to determine which are rocky like Earth and which have thick gaseous atmospheres like Neptune. The planets orbit their host star once every six to 143 days. All are closer to their host star than Venus is to our Sun.

“Prior to the Kepler mission, we knew of perhaps 500 exoplanets across the whole sky,” said Doug Hudgins, Kepler program scientist at NASA Headquarters in Washington. “Now, in just two years staring at a patch of sky not much bigger than your fist, Kepler has discovered more than 60 planets and more than 2,300 planet candidates. This tells us that our galaxy is positively loaded with planets of all sizes and orbits.”

The artist's rendering depicts the multiple planet systems discovered by NASA's Kepler mission. Out of hundreds of candidate planetary systems, scientists had previously verified six systems with multiple transiting planets (denoted here in red). Now, Kepler observations have verified planets (shown here in green) in 11 new planetary systems. Many of these systems contain additional planet candidates that are yet to be verified (shown here in dark purple). For reference, the eight planets of the solar system are shown in blue. Credit: NASA Ames/Jason Steffen, Fermilab Center for Particle Astrophysics
Kepler identifies planet candidates by repeatedly measuring the change in brightness of more than 150,000 stars to detect when a planet passes in front of the star. That passage casts a small shadow toward Earth and the Kepler spacecraft.

Each of the new confirmed planetary systems contains two to five closely spaced transiting planets. In tightly packed planetary systems, the gravitational pull of the planets on each other causes some planets to accelerate and some to decelerate along their orbits. The acceleration causes the orbital period of each planet to change. Kepler detects this effect by measuring the changes, or so-called Transit Timing Variations (TTVs).

Planetary systems with TTVs can be verified without requiring extensive ground-based observations, accelerating confirmation of planet candidates. The TTV detection technique also increases Kepler’s ability to confirm planetary systems around fainter and more distant stars.

Five of the systems (Kepler-25, Kepler-27, Kepler-30, Kepler-31 and Kepler-33) contain a pair of planets where the inner planet orbits the star twice during each orbit of the outer planet. Four of the systems (Kepler-23, Kepler-24, Kepler-28 and Kepler-32) contain a pairing where the outer planet circles the star twice for every three times the inner planet orbits its star.

“These configurations help to amplify the gravitational interactions between the planets, similar to how my sons kick their legs on a swing at the right time to go higher,” said Jason Steffen, the Brinson postdoctoral fellow at Fermilab Center for Particle Astrophysics in Batavia, Ill., and lead author of a paper confirming four of the systems.

The image shows an overhead view of orbital positions of the planets in systems with multiple transiting planets discovered by NASA's Kepler mission. Credit: NASA Ames/Dan Fabrycky, UC Santa Cruz
Kepler-33, a star that is older and more massive than our Sun, had the most planets. The system hosts five planets, ranging in size from 1.5 to 5 times that of Earth. All of the planets are located closer to their star than any planet is to our Sun.

The properties of a star provide clues for planet detection. The decrease in the star’s brightness and duration of a planet transit, combined with the properties of its host star, present a recognizable signature. When astronomers detect planet candidates that exhibit similar signatures around the same star, the likelihood of any of these planet candidates being a false positive is very low.

“The approach used to verify the Kepler-33 planets shows the overall reliability is quite high,” said Jack Lissauer, planetary scientist at NASA Ames Research Center at Moffett Field, Calif., and lead author of the paper on Kepler-33. “This is a validation by multiplicity.”

These discoveries are published in four different papers in the Astrophysical Journal and the Monthly Notices of the Royal Astronomical Society.


Related Stories

Astrobiology Roadmap Goal 1: Habitable planets

Kepler Finds that Two-Star Planetary Systems are Common
Kepler Mission Finds Three Smallest ExoPlanets
Plentiful Planet Population
Astrobiology Top 10: Kepler's Haul of Multiple-Planet Systems
About Us
Contact Us
Links
Sitemap
Podcast Rss Feed
Daily News Story RSS Feed
Latest News Story RSS Feed
Learn more about RSS
Chief Editor & Executive Producer: Helen Matsos
Copyright © 2014, Astrobio.net