spacer
 
Advanced Search
Astrobiology Magazine Facebook  Astrobiology Magazine Twitter
  
Retrospections New Clues About Venus
 
New Clues About Venus
Source: ESA press release
print PDF
Venus
Posted:   05/23/12

Summary: A new study is providing surprising insights about the geology of Venus. Data from the Venus Express mission has revealed that the planet's highlands contain geochemically evolved rocks, not just the basaltic rocks found in the volcanic plains.


Radar images of Venus reveal geological structures on the planet, such as steep-sided domes and rugged highland terrain, which geologists think could feature mineral-rich materials, such as felsic rocks. The discovery of felsic rocks on Venus would add support to the idea that the planet was once more Earth-like, as most of these materials on Earth formed in a water environment. However, other processes that don’t require the presence of water may also produce felsic rocks. Credit: NASA/JPL/USGS
ESA's Venus Express has been used to study the geology in a region near Venus' equator. Using near-infrared observations collected by the Venus Monitoring Camera (VMC), scientists have found evidence that the planet's rugged highlands are scattered with geochemically more evolved rocks, rather than the basaltic rocks of the volcanic plains. This finding is in agreement with previous studies, which used data from the spacecraft's Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) to map the planet's surface in the southern hemisphere.

Investigations into the nature of Venus' surface are complicated by the fact that the surface is concealed behind a dense covering of clouds. Since the 1980s, radar instruments on board orbiting spacecraft have been used to peer through these clouds to gain insight into the texture of the surface. However, in order to understand how Venus has evolved, geologists want to 'dig a bit deeper' and study the composition of its rocks – information that radar imaging can't provide.

They're eager to learn if geological features revealed in radar images, such as steep-sided domes and rugged highland terrain (called tesserae), contain materials that are rich in silicates, such as 'felsic rocks'. On Earth, most felsic rocks – the most common of which is granite – formed in a water environment. This makes them particularly interesting with regards to planetary evolution.

Since Venus Express began its observations, scientists are now starting to unearth the planet's geology. The near-infrared channels of the VMC and VIRTIS instruments have measured the intensity of 1 micron-wavelength radiation, which is dependent upon the surface temperature and emissivity of the rocks. It's the latter that is important here, as it depends on several factors, including the surface texture and mineral composition.

In a new study, the first findings about the geology of Venus based on VMC data have been published. The study, which was led by Alexander Basilevsky from the Vernadsky Institute of Geochemistry and Analytical Chemistry in Moscow, Russia, analysed the rugged highland terrain called Chimon-mana Tessera and its surrounding volcanic plains. This region was chosen for the VMC study because its equatorial position prevented solar light from skewing the data; by observing the night-side of Venus and keeping within low latitudes (40 degrees above and below the equator), the planet eclipsed the Sun from the spacecraft.

In these diagrams, a radar image (left) of the area studied by Basilevsky and his team has been shaded to show the different geologic regions that were analysed (centre). The rugged highland terrain called Chimon-mana Tessera is labelled "1", with the surrounding volcanic plains marked as "2n" and "2s". To the north, the nearby Tuulikki volcano and its summit are labelled "3" and "4" respectively. The picture to the right shows the emissivity of 1-micron radiation in these regions. It reveals a decrease in emissivity at Chimon-mana Tessera and the summit of the volcano, compared to the surrounding regions. Credit: From A.T. Basilevsky et al. 2012
Furthermore, the team needed to eliminate the effects that variations in the surface temperature may have had on the intensity of 1-micron radiation, so that any changes could be attributed to emissivity. Here, Venus' thick atmosphere played a helping hand, as the surface temperature has very little diurnal, seasonal or latitudinal variations; it is almost entirely a function of surface elevation. Therefore, the scientists compared observations of Chimon-mana Tessera with the nearby Tuulikki volcano, which lies 10 degrees north of the equator, as both summits are at a similar elevation (about 0.5-1 km above the plains). "Tuulikki is a basaltic volcano and we thought it presented a good scientific control for altitude," says Basilevsky.

The decrease in emissivity found in this steep-sided dome feature is consistent with the presence of geochemically more evolved rocks, such as felsic rocks. Furthermore, the team also found a decrease in emissivity of the surface material in the original target area, the Chimon-mana Tessera. Their conclusions, which support the presence of felsic materials on Venus, are in agreement with the earlier VIRTIS studies.

"While VIRTIS and VMC have different strengths, they have complemented each other perfectly here by reaching a common conclusion while studying different regions of the planet’s surface," says Håkan Svedhem, ESA Venus Express Project Scientist. The team says that their findings aren’t compromised by the fact that the volcano turned out to be a poor control region for the effects of altitude, as the mineralogical composition clearly plays a more important role.

"The winds are expected to be stronger at higher altitudes, blowing away the small grains and leaving behind coarser material that exhibits greater emissivity. Therefore, the effect of elevation, if any, should be an increase in emissivity," explains Eugene Shalygin from the Max Planck Institute for Solar System Research in Katlenburg-Lindau, Germany. "However, we detected a decrease in emissivity at Chimon-mana Tessera and the summit of the volcano, which may be caused by a change in mineralogical composition," he continues.

Venus Express. Credit: ESA
However, the 'control' volcano had a surprise in store for the team: an unexpected decrease in emissivity at its summit compared to the surrounding plains.

"It was only when we found the lower emissivity that we looked at the volcano with maximum resolution and discovered a steep-sided dome feature at the summit," says Basilevsky.

The jury is still out on whether the felsic rocks on Venus, if they do indeed exist, were created in a water environment, similar to the process that formed most of these materials on Earth. But it is in an enticing possibility, comments Basilevsky. "This is not the only way of forming felsic materials, but planetary geologists, like myself, are eager to find more similarities between Earth and Venus," he says.

However, he also points out that the Tuulikki volcano, which also showed decreased emissivity at its summit, formed late in the geologic history of Venus, when there couldn’t have been any oceans on the planet. "If there are felsic materials on the summit of Tuulikki, then these particular rocks clearly formed without water," says Basilevsky.


Related Stories

Astrobiology Roadmap Goal 1: Habitable planets
Astrobiology Roadmap Goal 2: Life in our solar system

How to Observe the Transit of Venus
A Magnetic Surprise from Venus
Venus as ExoPlanet Example
About Us
Contact Us
Links
Sitemap
Podcast Rss Feed
Daily News Story RSS Feed
Latest News Story RSS Feed
Learn more about RSS
Chief Editor & Executive Producer: Helen Matsos
Copyright © 2014, Astrobio.net