spacer
 
Advanced Search
Astrobiology Magazine Facebook  Astrobiology Magazine Twitter
  
Europe’s Origin of Life Summit: Excerpts from an Interview with Stuart Kauffman
Source: Adapted from counterpunch
print PDF
Origin & Evolution of Life
Posted:   12/06/12

Summary: Molecular biologist and complexity theorist, Stuart Kauffman, discusses his role in research taking place as part of the Origin of Life-CERN collaborative project. In February 2013, CERN is set to host private talks concerning the potential for origin of life research at the organization.


Stuart Kauffman. Credit: Templeton Foundation
Molecular biologist and complexity theorist, Stuart Kauffman, discusses his role in research taking place as part of the Origin of Life-CERN collaborative project. In February 2013, CERN is set to host private talks concerning the potential for origin of life research at the organization.

Below are excerpts from a recent interview with Kauffman, conducted by Suzan Mazur for the online newsletter, counterpunch.



Suzan Mazur: I understand that the Origin of Life – CERN collaboration is your brainchild. Can you confirm who the participants are for the strategic meeting coming up in three months? Is this the complete list?: Markus Nordberg of CERN and Mary Ann Meyers of John Templeton Foundation — who are cofunding the February 2013 gathering, Eors Szathmary and Gunter von Kiedrowski — who are hands-on directing the project, plus Wim Hordijk, Mike Steel, Doron Lancet, Gonen Ashkenasy, Tetsuya Yomo, Roberto Serra, Marcelo Gleiser, Kepa Ruiz Mirazo.

Stu Kauffman: Yes, that’s the unofficial list of many of the people likely to attend. Here’s the story. My current position as Finland Distinguished Professor at Tampere University of Technology led, by sheer luck, through the “FIDIPRO” Board, to my meeting Markus Nordberg, who’s of Finnish and Swedish descent and is co-head of the Atlas project at CERN. Markus said we (CERN – Atlas) want to use our computing power and organizational skills to help other fields. Do you know a field that might be ready to take off?

I said, “God yes, Markus, do you mean that? The origin of life field is getting ready to explode.”

And Markus said, “Well why don’t you gather a group of about 25 or 30 people.”

Scientists using CERN's Large Hadron Collider have found the Higgs Boson. Image Credit: CERN
After years of working in the origin of life field, I have a bunch of friends, and so I called some of them and everybody said “Sure.” About seven of us a year and a quarter ago had a brainstorming meeting on origin of life in Geneva at CERN. I have since handed off the Origin of Life project to Eors Szathmary and Gunter von Kiedrowski, and they’re fantastic!

Suzan Mazur: Can we set down some of the basic reasons for your collaboration with CERN? My understanding is that CERN wants to help with computing, i.e., automating the creation of a protocell, and also help organize the origin of life field by way of a grid connecting various origin of life experiments, investigators and funding sources.

Stu Kauffman: Yes, they want to help by providing computing power for the substantial theoretical work, link the theoretical and experimental scientists, and provide organizational skills learned at CERN. Here’s what I know that Markus would say. He would say cautiously that CERN’s business is physics, not biology.

On the other hand, I am saying to him that somehow biology IS physics, it’s just not particle physics. So Markus would rightly say that where we are now is that CERN is committed, without a doubt, to help fund the meeting we’re about to have in February. They have before them about nine proposals for computational experiments from the Origin of Life group that they’ve had for several months. Wim Hordijk may go to CERN to help get these programs running.

Suzan Mazur: The origin of life computer grid that CERN is helping you to organize, is it going to be a democratic, open kind of accessible tool, for credentialled and non-credentialled researchers alike, including amateurs, students of all ages, etc?

Stu Kauffman: Yes. It’s just what you said. It’s that we springboard the creation of an international web of stuff that’s entirely new, not just origin of life, but the becoming of the biosphere and systems we create beyond entailing law. My hope is that it will be a wave of very new science and be open to everybody. Everybody.

Considered the blueprint of life, DNA is found in all living cells. Scientists think it was preceded by RNA, which may have played a role in the development of the first life on Earth. Image Credit: Dr. Frank Cucinotta, NASA/Johnson Space Center, and Prem Saganti, Lockheed Martin
In 1905, when Einstein was inventing relativity, do you think he could have gotten funding? He was a clerk in a patent office. Suppose he’d approached the funding grantors and asked what it was like to ride on a light beam, he would have been told, Albert stick with the patent office: He changed the world. Radical science is hard to fund. So we need a way of funding science that brings together people of divergent views who respect one another, to listen in the chaos of not understanding one another, until they get to understand one another. So just the kind of a democratic system you’re talking about is what we need.

Then you have collaborating teams and competing teams. And they collaborate and compete in such a way that ideas bubble up from the bottom and then get acted upon in a democratic way. This is important, beyond CERN. CERN is a model for reorganizing civilization. The reason is that at CERN you do not know ahead of time what you’re looking for. I mean they were looking for the Higgs thing, but they didn’t necessarily know how to go about it.

Suzan Mazur: Do you know what’s on the agenda for the 2013 meeting?

Stu Kauffman: Yes. Certainly it involves collectively autocatalytic sets, whether they be peptide sets or RNA sets or DNA sets. It involves liposomes where Pier Luigi Luisi has shown that you can make liposomes that grow and bud and divide.

Certainly it will involve getting liposomes to contain autocatalytic sets where Roberto Serra has shown theoretically that if they both divide, the two systems synchronize their division so that you’ve got a protocell. There’s much to be added, but you’ve got the start. Meanwhile, Eors led a group of us to take my own model of the emergence of collectively autocatalytic sets and ask the question, yes, but can they evolve? And yes, collectively autocatalytic sets can evolve. So it can be the basis for the early evolution of a protocell where it’s made out of peptides or RNA or both or whatever. So this will certainly be on the program.

Now rather astonishingly, is something that I co-invented with Gabor Vattay and Samuli Niiranen. A version may be realized in protocells. Gabor is a quantum physicist in Budapest and Samuli, a computer scientist in Finland. Two years ago we kind of discovered something we called the “Poised Realm,” which Gabor thinks is a new state of matter, which hovers between the quantum world and the classical world, back and forth. More and more we believe the Poised Realm is real and things can go from the quantum to being classical for all practical purposes and back. This is utterly novel if true. And we don’t yet know how this may apply to the origin of life.

Suzan Mazur is the author of The Altenberg 16: An Expose’ of the Evolution Industry. Her reports have appeared in the Financial Times, The Economist, Forbes, Newsday, Philadelphia Inquirer, Archaeology, Connoisseur, Omni and others, as well as on PBS, CBC and MBC. She has been a guest on McLaughlin, Charlie Rose and various Fox Television News programs. She can be reached at: sznmzr@aol.com

Stu Kauffman can be reached at: stukauffman@gmail.com


Related Stories

Astrobiology Roadmap Goal 3: Origins of life

A Challenge to Find Life's Origin
About Us
Contact Us
Links
Sitemap
Podcast Rss Feed
Daily News Story RSS Feed
Latest News Story RSS Feed
Learn more about RSS
Chief Editor & Executive Producer: Helen Matsos
Copyright © 2014, Astrobio.net