Mars Ocean Hypothesis Hits the Shore

Categories: Mars

To test the hypothesis that oceans once covered much of the northern hemisphere of Mars, scientists at Malin Space Science Systems (MSSS) of San Diego, CA, have used high resolution images of Mars taken with the Mars Orbiter Camera (MOC) on Mars Global Surveyor.

"The ocean hypothesis is very important, because the existence of large bodies of liquid water in the Martian past would have had a tremendous impact on ancient Martian climate and implications for the search for evidence of past life on the planet," said Dr. Kenneth Edgett, a staff scientist at MSSS.

Features in earlier Mars probes, in particular the startling Viking images, led a number of researchers to look for remnants of ancient coastlines and further raised the possibility that such a body of water once existed.

Artist's conception of the early Earth
Figure 1. Ancient ocean on Mars. A number of scientists have proposed that the lowlands of Mars’s northern hemisphere were once covered in water. A region of possible shoreline near the giant volcano Olympus Mons has been photographed in detail by the Viking spacecraft (Figure 4) and by the Mars Orbiter Camera (Figure 5).

"So things now with respect to the oceans," said Dr. Michael Carr, of the US Geological Survey, ‘they’re kind of in limbo right now. I have looked at a lot of the MOC images in places where the shorelines are supposed to be and I can’t find any evidence. You can see features there, but whether these are shorelines or not is kind of difficult."

Artist's conception of the early Earth
Figure 2. Mars Orbiter Camera (MOC) aboard the Mars Global Surveyor spaceraft. The MOC produces much higher resolution images of the Martian surface than could be obtained by the Viking mission. Image Credit: NASA/JPL

Beginning in 1998, MSSS scientists Michael Malin and Kenneth Edgett set out to answer this question with higher resolution cameras five to ten times better than Viking. Initially the team targeted about 2% of the MOC images in places that would test shorelines proposed by others in the scientific literature.

With the researchers’ visual identification at higher resolution, none of these features appeared to have been formed by the action of water in a coastal environment. Their analysis first appeared in Geophysical Research Letters, in a paper entitled "Oceans or Seas in the Martian Northern Lowlands: High Resolution Imaging Tests of Proposed Coastlines."

Artist's conception of the early Earth
Figure 3. Location of proposed shoreline with respect to Olympus Mons. The white rectangle shows the area covered in Figure 4.

Fourteen images were analyzed of areas that had been indicated, from Viking images, to be candidates for shorelines. Whether a larger image sample or confirming data will bear out the visual interpretation of what expectations of a Martian shoreline should look like, remains a scientific conclusion ripe for debate. The Mars Global Surveyor carries onboard the Mars Orbiter Laser Altimeter instrument (MOLA), which uses infrared laser pulses to measure the surface below.

"The MOC images we took in the late ’90s do not show any coastal landforms in areas where previous researchers -working with lower resolution Viking images proposed there were shorelines."

As presented in the Geophysical Research Letters paper, the analysis focused on four different areas that had been proposed as coastlines. One of these areas is northwest of the great volcanoOlympus Mons (Figure 3 ). Viking images of the linear feature separating the western margin of the Lycus Sulci from the lower, smoother Amazonis plains (upper left in Figure 4 ) led some researchers to conclude that the two surfaces were in contact along a cliff.

Previously, since the proposed cliff faces toward the smooth plains, it was suggested that this feature might be the signature of a cliff that forms from erosion by waves in a body of water as they break against a coastline.

Artist's conception of the early Earth
Figure 4. Viking image taken in the late 1970s. The linear feature in the upper left is the proposed shoreline. The three small white boxes are areas photographed in high resolution by the MOC in 1998 (see Figure 5).

Three MOC images were acquired along this proposed shoreline, covering the areas indicated by the white boxes in Figure 4. Each image was targeted to straddle the feature, a rise that runs diagonally across the scene from near the lower left toward the upper right. The middle section of the central image, shown in Figure 5, was taken in July 1998. The Lycus Sulci uplands (lower half) here are roughly-textured while the flat Amazonis plains (upper half) appear more smooth.

This image in particular shows that the contact between Amazonis and Lycus Sulci is clearly not a wave-cut cliff, and that there are no features that can be unambiguously identified as coastal landforms. "But what bothers me," said Carr, "is that throughout this latitude band where the ocean shorelines are being mapped, the surficial geology is very complicated. There’s a lot going on. You get all kinds of very complicated morphology."

Close-up photo of proposed shoreline, taken by MOC in 1998
Figure 5. Close-up view of the proposed shoreline, taken by MOC in 1998. There is no sign of a cliff cut by waves. The picture has a resolution of 15 feet and covers an area about 3 miles across. It is illuminated from the right Credit: NASA/JPL/Malin Space Science Systems.

"Even on Earth, looking for ancient shorelines from the air or space is a challenge," said Dr. Malin. "But, despite the difficulties in identifying ancient coastlines remotely, we believe these MOC images of the proposed shorelines are of a high enough resolution that they would have shown features indicative of a coastal environment had there been an ancient ocean on Mars."

Martian seas would have been influenced by only one third the gravity of Earth’s seas and would not have been subject to strong tidal forces, like that arising from the Earth’s Moon. Because of the Earth’s active erosion, there are fewer chances to compare an ancient Mars coast with a present eroding Earth coast as such a rift would appear seen from space.

What Next?

While the suggestion that Mars at one time had oceans cannot be ruled out, the foundation for the "ocean hypothesis" developed in the 1980s on the basis of suspected shorelines appears now to require a broader scan of any apparent beachfront real estate on Mars.

However, it should be understood that there is significant other evidence of water on Mars in the past, both from Mars Global Surveyor and from previous missions. To search for clues to the very important question of the role of water in the evolution of Mars, the MOC continues to acquire new high resolution pictures.

Related Links

More on This Story

Original NASA/JPL/Malin Space Science Systems Press Release

Additional details and more images from the Malin and Edgett paper

Malin, M. C., and Edgett, K. S., 1999. Oceans or Seas in the Martian Northern Lowlands: High Resolution Imaging Tests of Proposed Coastlines, Geophys. Res. Letters, V. 26, No. 19, p. 3049-3052

Ocean Hypothesis

Possible Configuration of Ancient Oceans on Mars
(Brown University) – Topographic portrayal of the surface of Mars derived from Mars Orbiter Laser Altimeter (MOLA) data.