spacer
 
Advanced Search
Astrobiology Magazine Facebook  Astrobiology Magazine Twitter
  
Hot Topic Solar System Mars A Flood of Mars Photos
 
A Flood of Mars Photos
based on an University of Arizona release
print PDF
Mars
Posted:   12/02/06

Summary: Incredibly detailed images from the Mars Reconnaissance Orbiter's High Resolution Science Imaging Experiment (HiRISE) are available on the web. The pictures show surface features including gullies, sand avalanches and a fossil delta inside a crater that once held a lake.

The bright irregularly-shaped feature in area "a" of the image is Opportunity's parachute, now lying on the martian surface. Near the parachute is the cone-shaped "backshell" that helped protect Opportunity's lander during its seven-month journey to Mars. Dark surface material may have been disturbed when the backshell touched down, exposing the lighter-toned materials seen next to the backshell. Area "B" of the image shows the impact point and the broken remnants of Opportunity's heat shield. The heat shield protected the vehicle during its fiery descent through the martian atmosphere, and then was released from the spacecraft during the final stages of the descent, breaking into two pieces when it hit the martian surface. Also visible is the small crater formed at the heat shield's impact point. Opportunity visited the heat shield during its drive southward from Endurance crater. Area "C" of the image shows "Eagle crater", the small martian impact crater where Opportunity's airbag-cushioned lander came to rest. The lander is still clearly visible on the floor of the crater. Opportunity spent about 60 martian days exploring rock outcrops and soils in Eagle crater before setting off to explore more of Meridiani Planum.
Credit: NASA/JPL/University of Arizona


A portion of a delta that partially fills Eberswalde crater in Margaritifer Sinus. It was first recognized and mapped using MOC images that revealed various features whose presence required sustained flow and deposition into a lake. The HiRISE image resolves meter-scale features that record the migration of channels and delta distributaries as the delta grew over time. Credit: NASA/JPL/University of Arizona


The University of Arizona-based team that operates the high-resolution camera on NASA's Mars Reconnaissance Orbiter, in conjunction with NASA, has released the first of what will be a non-stop flood of incredibly detailed Mars images taken during the spacecraft's two-year primary science mission.

The High Resolution Science Imaging Experiment (HiRISE) camera took almost 100 images during the first two weeks of its main science mission, which began Nov. 7.

"There's no Earth analog for some places we see, while other places look remarkably like Earth," said Professor Alfred S. McEwen of UA's Lunar and Planetary Laboratory, HiRISE principal investigator. "The details we're seeing are just fantastic."

The HiRISE team has posted about 15 of the new large images on the HiRISE Website. Last week, they added more than a dozen new Mars images, as well as reprocessed images, taken from low orbit during test imaging in early October. The team plans to release the latest HiRISE images on their website every Wednesday.

The views released show seemingly endless fields of sand dunes, including some carved by gullies that possibly form when carbon dioxide or water frost in the dunes is heated by sunlight, triggering avalanches of flowing sand. Other HiRISE images show layered arid terrains that resemble landscapes protected as national parks on our own planet, and a fossil delta inside a crater that once held a lake. HiRISE images resolve meter-sized blocks within the delta channel that may be blocks of sand and gravel carried along as the channels eroded. The detailed images will be vital in understanding the history of liquid water on Mars, thereby yielding clues about the potential for past life on the red planet.

Hundreds of enigmatic small troughs are seen to carve into the slopes of these dark sand dunes lying within Russell Crater on Mars. These features were previously identified as gullies in images from the MOC on Mars Global Surveyor, but the higher resolution HiRISE image brings out many new details and mysteries. Credit: NASA/JPL/University of Arizona


HiRISE images also capture numerous impact craters, including Endurance crater that NASA's Opportunity rover explored for ten months of its now nearly 3-year mission. Details visible in the HiRISE image of Opportunity's landing site show the parachute lying on the Martian surface, Opportunity's heat shield at a different location, and the lander itself on the floor of the small impact crater where the airbag came to a stop.

Other images show layered polar terrains that likely record Martian climate changes, and also polygon-patterned northern plains regions that are among candidate landing sites for the Phoenix Lander spacecraft in 2008.

"You see stuff at this level of detail and you want to see more," said Candy Hansen of the Jet Propulsion Laboratory, a HiRISE co-investigator who has helped lead imaging operations at the HiRISE Operations Center (HiROC) during the first weeks of the science mission this month.

"These images are at a geologist's scale," Hansen said. "A geologist could hike the terrain seen in the width of one of our images, six kilometers, in a day. These images bring the planet down to scales that match our own human level of experience, and that's a big help with interpretation."

The HiRISE camera takes images of 3.5-mile-wide (6 kilometer) swaths as the orbiter flies at about 7,800 mph between 155 and 196 miles (250 to 316 km) above the planet. The camera resolves geologic features as small as 40 inches across.

The landing site of the Mars Exploration Rover Opportunity. The prominent impact crater on the right-hand side of the image is "Endurance crater" where Opportunity spent about ten months of its now nearly three-year mission. Credit: NASA/JPL/University of Arizona


"It's been a constant race to look at all these images while we're planning our future targets," McEwen said. "But it's important to examine the data so we can learn how to use the best possible settings, and make decisions about which targets we'll need to get in stereo or color."

HiRISE began a new imaging cycle November 19, and begins another on December 3. Over the next couple of weeks, the camera is targeting "all the easy-to-find hardware on Mars," McEwen said. That includes NASA's rover Spirit, the Viking 1 and Viking 2 landers, and Mars Pathfinder.

McEwen has been working a 12-hour day, seven days a week this month. The rest of the team has been clocking major overtime, too.

"We're trying not to get people too burned out, but we have to keep up. We're going to get about a hundred new images every two weeks without a break," McEwen said. "The spacecraft doesn't take Thanksgiving or Christmas off."


Related Web Pages

HiRISE
MRO Mission page
Looking Down on Opportunity
MRO A-OK
HiRISE on the Down Low
MRO's Subsurface Sight


About Us
Contact Us
Links
Sitemap
Podcast Rss Feed
Daily News Story RSS Feed
Latest News Story RSS Feed
Learn more about RSS
Chief Editor & Executive Producer: Helen Matsos
Copyright © 2014, Astrobio.net