spacer
 
Advanced Search
Astrobiology Magazine Facebook  Astrobiology Magazine Twitter
  
Hot Topic Solar System Saturn Saturn's Active Moons
 
Saturn's Active Moons
Based on a JPL news release
print PDF
Saturn
Posted:   06/19/07

Summary: The Cassini spacecraft has found that Saturn's icy moons Tethys and Dione are flinging streams of particles into space. The findings suggest that these moons may be geologically active.

Cassini Finds Saturn Moons Are Active

This view of Tethys was taken by Voyager 2 on August 26, 1981. It is the highest resolution image acquired by the Voyager spacecraft.
Credit: NASA

Saturn's moons Tethys and Dione are flinging great streams of particles into space, according to data from the Cassini mission to Saturn. The discovery suggests the possibility of some sort of geological activity, perhaps even volcanic, on these icy worlds.

These results appear in this week's issue of the journal Nature. The Cassini mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency.

The particles were traced to the two moons because of the dramatic outward movement of electrically charged gas, which could be mapped back to the moons' orbits in the magnetic environment of Saturn. Known as plasma, the gas is composed of negatively charged electrons and positively charged ions, which are atoms with one or more electrons missing. Because they're charged, the electrons and ions can become trapped inside a magnetic field.

Saturn rotates in just 10 hours and 46 minutes. This sweeps the magnetic field and the trapped plasma through space. Just like a child on a fast-spinning merry-go-round, the trapped gas feels a force trying to throw it outwards, away from the center of rotation.

This view of Dione captured by Cassini showcases the moon's tortured complex of bright cliffs.
Credit: NASA

Soon after the Cassini spacecraft reached Saturn in June 2004, its instruments revealed that the planet's hurried rotation squashes the plasma into a disc, and that great fingers of gas are being thrown out into space from the disc's outer edges. Hotter, more tenuous plasma then rushes in to fill the gaps.

Now, Jim Burch, team member of the Cassini Plasma Spectrometer at the Southwest Research Institute, San Antonio, Texas, and his colleagues have made a careful study of these events using the instrument. They have found that the direction of the ejected electrons points back towards Tethys and Dione. "It establishes Tethys and Dione as important sources of plasma in Saturn's magnetosphere," said Burch.

Until this discovery, the only moons of Saturn known to be active worlds were Titan and Enceladus. "This new result seems to be a strong indication that there is activity on Tethys and Dione as well," said Andrew Coates from the Mullard Space Science Laboratory, University College London, co-author and member of the Cassini Plasma Spectrometer team.

Activity is a draw for planetary scientists, as it means that the planet has yet to become geologically dead or is perhaps being supplied with energy. The activity on Enceladus was detected first by Cassini's Dual Technique Magnetometer. This led the flight team to schedule a particularly close pass of Enceladus, which revealed a wealth of data about Enceladus' alien geysers - and spectacular pictures, too.

Over a year ago, NASA's Cassini spacecraft spotted geysers shooting off the surface of Saturn's moon Enceladus.
Credit: NASA/JPL/Space Science Institute

Thanks to the Cassini mission, the moons of Saturn have become an area of great interest for astrobiologists. The mission has returned a plethora of data about Titan, the only moon in the Solar System to harbor a dense atmosphere. Many scientists believe that Titan's atmosphere can teach us about the history of the early Earth and may even yield clues about how life can originate from chemical precursors. Enceladus sparked interest because the geysers observed by Cassini were an indication that the moon may have liquid water reserves. Because life as we know it requires liquid water to survive, searching for liquid water is a first step in identifying habitats for life in our Solar System. Cassini's new findings will lead to more detailed studies of Tethys and Dione in order to determine how these icy worlds are being supplied with energy.

"The best results arise when we combine a variety of data sets to understand the observations," said Michele Dougherty, Imperial College, London, who is principal investigator of the magnetometer.

Future flybys of Dione and Tethys will allow the magnetometer team and the other instrument teams a close-up look at the moons. Before that happens, the teams have to go back and search for further signs of activity in the data already collected during the Tethys and Dione flybys of 2005.

In addition, having detected the electrons, they will try to determine the composition of the Tethys and Dione plasma using ion data.


Related Web Sites

Cassini Mission
Rubbing Tiger Stripes
A Hot Start on Enceladus
Astrobiology Top 10: Water on Enceladus?
Building Titan


About Us
Contact Us
Links
Sitemap
Podcast Rss Feed
Daily News Story RSS Feed
Latest News Story RSS Feed
Learn more about RSS
Chief Editor & Executive Producer: Helen Matsos
Copyright © 2014, Astrobio.net