spacer
 
Advanced Search
Astrobiology Magazine Facebook  Astrobiology Magazine Twitter
  
Hot Topic Solar System Meteorites, Comets and Asteroids Jupiter: Friend or Foe?
 
Jupiter: Friend or Foe?
Based on a European Planetary Science Congress news release
print PDF
Meteorites, Comets and Asteroids
Posted:   08/29/07

Summary: The idea that the planet Jupiter acts to shield Earth from asteroids and comets has now been challenged. A new study shows that the presence of Jupiter does not necessarily lead to a lower impact rate for Earth and other planets in the inner Solar System.
This painting depicts an asteroid slamming into tropical, shallow seas of the sulfur-rich Yucatan Peninsula in what is today southeast Mexico. The aftermath of this immense asteroid collision, which occurred approximately 65 million years ago, is believed to have caused the extinction of the dinosaurs and many other species on Earth.
Credit: Donald E. Davis

The traditional belief that Jupiter acts as a celestial shield, deflecting asteroids and comets away from the inner Solar System, has been challenged by the first in a series of studies evaluating the impact risk to the Earth posed by different groups of object. Understanding how Jupiter affects impact rates is important because asteroid and comet impacts can have profound implications for life on Earth. In the past, impacts may have delivered important pre-cursor molecules for the origin of life on our planet. Impacts have also caused devastating mass extinctions, dramatically effecting the development and evolution of life on Earth.

On Friday 24th August at the European Planetary Science Congress in Potsdam, Germany, Dr Jonathan Horner presented a study of the impact hazard posed to Earth by the Centaurs, the parent population of the Jupiter Family of comets (JFCs). The results show that the presence of a Jupiter-like planet in the Solar System does not necessarily lead to a lower impact rate at the Earth.

An aerial view of Meteor Crater, Arizona.
Credit: Jim Hurley, 1978

Dr Horner, from the UK's Open University (OU), said, "The idea that a Jupiter-like planet plays an important role in lessening the impact risk on potentially habitable planets is a common belief but there has only really been one study done on this in the past, which looked at the hazard due to the Long Period Comets. We are carrying out an ongoing series of studies of the impact risks in planetary systems, starting off by looking at our own Solar System, since we know the most about it!"

The Jupiter Family of Comets are short period comets with an orbital period of less than 20 years. Their orbits are controlled by Jupiter and they are believed to originate from the Kuiper Belt, a vast population of small icy bodies that orbit just beyond Neptune. Famous JFCs include Comet 81P/Wild 2, which was encountered by the Stardust spacecraft in January 2004 and Comet Shoemaker Levy-9, which broke up and collided with Jupiter in July 1994.

Fragments of Comet P/Shoemaker-Levy 9 colliding with Jupiter (July 16-24, 1994).
Credit: NASA

The team at the OU developed a computer model that could track the paths of 100,000 Centaurs around the Solar System over 10 million years. The simulation was run five times: once with Jupiter at its current mass, once without a Jupiter, and then with planets of three-quarters, a half and a quarter the mass of Jupiter (for comparison, Saturn is about a third of the mass of Jupiter). The team found that the impact rate in a Solar System with a planet like our Jupiter is about comparable to the case where there is no Jupiter at all. However, when the mass of Jupiter was between these two extremes, the Earth suffered an increased number of impacts from the JFCs.

Dr Horner said, "We've found that if a planet about the mass of Saturn or a bit larger occupied Jupiter's place, then the number of impacts on Earth would increase. However if nothing was there at all, there wouldn't be any difference from our current impact rate. Rather than it being a clear cut case that Jupiter acts as a shield, it seems that Jupiter almost gives with one hand and takes away with the other!"

Montage of Jupiter and the comet fragments of Shoemaker-Levy 9.
Credit: NASA/ESA

The study shows that if there is no giant planet present, the JFCs will not be diverted onto Earth-crossing orbits, so the impact rate at the Earth is low. A Saturn-mass planet would have the gravitational pull to inject objects onto Earth-crossing orbits, but would not be massive enough to easily eject objects from the Solar System. This means that there would be more objects on Earth-crossing orbits at any given time, and therefore more impacts. However, a planet with Jupiter's vast mass can give objects the gravitational boost to eject them from the Solar System. Therefore, if Jupiter deflects JFCs to an Earth-crossing orbit, it may well later sweep them right out of the Solar System and off the collision course with the Earth.

The group is now assessing the impact risk posed to the Earth by the Asteroids and will go on to study the Long Period Comets, before examining the role of the position of Jupiter within our system.


Related Web Sites

Great Impact Debate I: Benefits of Hard Bodies
Debating the Dinosaur Extinction
Asteroid Riddling
Bombarded by Mysteries
Dinosaur Era Ended Instantly
Piecing Together a Permian Impact
Crater Diary, Part 1


About Us
Contact Us
Links
Sitemap
Podcast Rss Feed
Daily News Story RSS Feed
Latest News Story RSS Feed
Learn more about RSS
Chief Editor & Executive Producer: Helen Matsos
Copyright © 2014, Astrobio.net