spacer
 
Advanced Search
Astrobiology Magazine Facebook  Astrobiology Magazine Twitter
  
Hot Topic Solar System Earth Spaceship Earth Setting Stars Reveal Secrets
 
Setting Stars Reveal Secrets
Based on a ESA news release
print PDF
Spaceship Earth
Posted:   11/10/07

Summary: Watching stars set behind a planet from space can reveal unique details about the planet's atmosphere. Researchers at ESA are using orbiting spacecraft to learn about the atmospheres of Earth, Mars and Venus.
ESA's Envisat spacecraft was launched in February of 2002 and continues to help researchers understand Earth's atmosphere and climate.
Credit: ESA

Watching the stars set from the surface of the Earth may be a romantic pastime but when a spacecraft does it from orbit, it can reveal hidden details about a planet's atmosphere.

The technique is known as stellar occultation. Jean-Loup Bertaux, Service d'Aeronomie du CNRS, France was the first to suggest its use on an ESA mission. It works by watching stars from space, while they drop behind the atmosphere of a planet under investigation, before disappearing from view below the planet's horizon.

When the stars are shining above the atmosphere, they give off radiation across a wide spread of wavelengths. As the orbit of the spacecraft carries it around the planet, the star appears to sink down, behind the atmosphere of the planet. The atmosphere acts as a filter, blocking out certain wavelengths of the star's radiation. The key to this technique is that the blocked wavelengths are representative of the molecules and atoms in the planet's atmosphere.

ESA currently has three spacecraft around three different planets that are using the technique to investigate those atmospheres. Each one is returning unique insights.

Mars Express above the thin Martian upper atmosphere successfully achieved orbital insertion on Christmas 2003.
Credit: NASA/JPL

Around Earth, ESA's Envisat mission carries an instrument called GOMOS(Global Ozone Monitoring by Occultation of Stars). As its name suggests, it is designed to study whether the quantity of ozone is increasing now that the use of harmful chemicals has been banned. Since 2002, it has been watching about 400 stars set behind the Earth every day in order to build up a map of the ozone in the Earth's atmosphere for all latitudes and longitudes. This data is important in monitoring changes in the Earth's atmosphere, and studying how they are related to the global climate.

"It's still too early to say whether the ozone is recovering or not," says Bertaux. Nevertheless, as data accumulates, so the instrument is discovering other phenomena that contribute to the amount of ozone in the atmosphere. In January and February of 2004, GOMOS saw a large build up of nitrogen dioxide at an altitude of 65 km.

Nitrogen dioxide is an important gas to trace in the atmosphere because it can destroy ozone. Over the next two months, GOMOS watched as the layer sank to 45 km, clearly destroying ozone as it descended, providing scientists with another piece in the ozone puzzle.

A simplified stellar occultation instrument is onboard ESA's Mars Express. Since the spacecraft arrived at the Red Planet in 2003, SPICAM (Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars) has observed more than 1000 stellar occultations. This work provides the most detailed description yet of Mars's upper atmosphere, and reveals persistent haze layers. SPICAM is helping scientists better define the martian climate in order to understand how the planet developed over time to reach its current state, and whether or not Mars was ever capable of supporting life.

Venus Express successfully entered its operational orbit around Venus in May of 2006.
Credit: ESA

Apart from delivering pure science, the data provides practical benefits for future exploration missions. "Atmospheric profiles of Mars are important for designing parachutes for landing craft," says Bertaux.

The latest addition to this family of instruments is SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) on Venus Express. Venus has a different atmosphere again from Earth or Mars. The atmosphere of Venus is much denser than that of Earth, and some scientists believe that studying Venus could yield clues about the processes behind the greenhouse effect. In this way, Venus can help us understand the potential future for Earth's climate. SPICAV is currently revealing the temperature and density profiles of Venus' atmosphere to scientists on Earth, and they expect to publish their results soon.

"I think the stellar occultation technique is now 'combat proven' and should be useful for further long-term studies," says Bertaux.

Publication References: 'Stellar Occultations at UV wavelengths by the SPICAM instrument: Retrieval and analysis of Martian haze profile' by F. Montmessin, J.L. Bertaux and P. Rannou was published in the Journal of Geophysical Research in 2006.

The second article 'Large increase of NO2 in the north polar mesosphere in January-February 2004: Evidence of a dynamical origin from GOMOS/Envisat and SABER/TIMED data' by A. Hauchecorne, J.L. Bertaux, F. Dalaudier, J.M. Russell III; M.G. Mlynczak, E. Kyrola, and D. Fussen was published in the Geophysical Research Letters on 16 February 2007.


Related Web Sites

Envisat (ESA)
Up, Up, and Away - to Venus
Earth's Hazy Past
Argon Provides Atmospheric Clues
Astrobiology Top 10: Venus Express
Venus, We Have Arrived


About Us
Contact Us
Links
Sitemap
Podcast Rss Feed
Daily News Story RSS Feed
Latest News Story RSS Feed
Learn more about RSS
Chief Editor & Executive Producer: Helen Matsos
Copyright © 2014, Astrobio.net