spacer
 
Advanced Search
Astrobiology Magazine Facebook  Astrobiology Magazine Twitter
  
Hot Topic Deep Space Cosmic Evolution Lacking Lithium
 
Lacking Lithium
Based on an ESO release
print PDF
Cosmic Evolution
Posted:   11/14/09

Summary: A census of 500 stars has successfully linked the 'lithium mystery' observed in our Sun to the presence of planetary systems. The study shows that Sun-like stars with planetary systems lack lithium, and could help astronomers identify more stars that host planets.

Exoplanets Clue to Sun's Curious Chemistry

Burning lithium inside a star. Artist’s impression of a baby star still surrounded by a protoplanetary disc in which planets are forming.
Credit: ESO/L. Calçada
A ground-breaking census of 500 stars, 70 of which are known to host planets, has successfully linked the long-standing “lithium mystery” observed in the Sun to the presence of planetary systems. Using ESO’s successful HARPS spectrograph, a team of astronomers has found that Sun-like stars that host planets have destroyed their lithium much more efficiently than “planet-free” stars. This finding does not only shed light on the lack of lithium in our star, but also provides astronomers with a very efficient way of finding stars with planetary systems. This could be very useful for astrobiologists searching for habitable worlds beyond our own solar system.

“For almost 10 years we have tried to find out what distinguishes stars with planetary systems from their barren cousins,” says Garik Israelian, lead author of a paper appearing this week in the journal Nature. “We have now found that the amount of lithium in Sun-like stars depends on whether or not they have planets.”

Low levels of this chemical element have been noticed for decades in the Sun, as compared to other solar-like stars, and astronomers have been unable to explain the anomalys The discovery of a trend among planet-bearing stars provides a natural explanation to this long-standing mystery. “The explanation of this 60 year-long puzzle is for us rather simple,” adds Israelian. “The Sun lacks lithium because it has planets.”

sun_sm
Planet-hosting stars like the Sun have destroyed their lithium more efficiently than planet-free stars.
Credit: Harvard University
This conclusion is based on the analysis of 500 stars, including 70 planet-hosting stars. Most of these stars were monitored for several years with ESO’s High Accuracy Radial Velocity Planet Searcher. This spectrograph, better known as HARPS, is attached to ESO’s 3.6-meter telescope and is the world’s foremost exoplanet hunter. “This is the best possible sample available to date to understand what makes planet-bearing stars unique,” says co-author Michel Mayor.

The astronomers looked in particular at Sun-like stars, almost a quarter of the whole sample. They found that the majority of stars hosting planets possess less than 1% of the amount of lithium shown by most of the other stars. “Like our Sun, these stars have been very efficient at destroying the lithium they inherited at birth,” says team member Nuno Santos. “Using our unique, large sample, we can also prove that the reason for this lithium reduction is not related to any other property of the star, such as its age.”

HARPS is located on the ESO 3.6-m telescope at La Silla, Chile.
Credit: ESO
Unlike most other elements lighter than iron, the light nuclei of lithium, beryllium and boron are not produced in significant amounts in stars. Instead, it is thought that lithium, composed of just three protons and four neutrons, was mainly produced just after the Big Bang, 13.7 billion years ago. Most stars will thus have the same amount of lithium, unless this element has been destroyed inside the star.

This result also provides the astronomers with a new, cost-effective way to search for planetary systems: by checking the amount of lithium present in a star astronomers can decide which stars are worthy of further significant observing efforts.

Now that a link between the presence of planets and curiously low levels of lithium has been established, the physical mechanism behind it has to be investigated. “There are several ways in which a planet can disturb the internal motions of matter in its host star, thereby rearrange the distribution of the various chemical elements and possibly cause the destruction of lithium. It is now up to the theoreticians to figure out which one is the most likely to happen,” concludes Mayor.


Related Stories

Astrobiology Roadmap Goal 1: Habitable Planets

32 New Exoplanets Found
Confirming a Hot Earth
New Planet Orbits Backwards
About Us
Contact Us
Links
Sitemap
Podcast Rss Feed
Daily News Story RSS Feed
Latest News Story RSS Feed
Learn more about RSS
Chief Editor & Executive Producer: Helen Matsos
Copyright © 2014, Astrobio.net