spacer
 
Advanced Search
Astrobiology Magazine Facebook  Astrobiology Magazine Twitter
  
Hot Topic Solar System Outer Solar System Messages From the Edge of the Solar System
 
Messages From the Edge of the Solar System
Source: JPL press release
print PDF
Outer Solar System
Posted:   04/29/11

Summary: More than 30 years after they left Earth, NASA's twin Voyager probes are now returning data from the edge of the Solar System. With each passing day they are beaming back a message that, to scientists, is both unsettling and thrilling.


This artist's rendering shows NASA's Voyager spacecraft. On the boom to the right, the Cosmic Ray Science instrument, Low Energy Charged Particle detector, the Infrared Spectrometer and Radiometer, Ultraviolet Spectrometer, Photopolarimeter and Wide and Narrow Angle Cameras are visible. The bright gray square is an optical calibration plate for the instruments. The Golden Record, containing images and sounds from Earth, is the yellow circle on the main spacecraft body. Credit: NASA/JPL-Caltech
More than 30 years after they left Earth, NASA's twin Voyager probes are now at the edge of the Solar System. Not only that, they're still working. And with each passing day they are beaming back a message that, to scientists, is both unsettling and thrilling.

The message is, "Expect the unexpected."

"It's uncanny," says Ed Stone of the California Institute of Technology in Pasadena, Voyager Project Scientist since 1972. "Voyager 1 and 2 have a knack for making discoveries."

On April 28, 2011, NASA held a live briefing to reflect on what the Voyager mission has accomplished--and to preview what lies ahead as the probes prepare to enter the realm of interstellar space in our Milky Way galaxy.

The adventure began in the late 1970s when the probes took advantage of a rare alignment of outer planets for an unprecedented Grand Tour. Voyager 1 visited Jupiter and Saturn, while Voyager 2 flew past Jupiter, Saturn, Uranus and Neptune. (Voyager 2 is still the only probe to visit Uranus and Neptune.)

When pressed to name the top discoveries from those encounters, Stone pauses, not for lack of material, but rather an embarrassment of riches. "It's so hard to choose," he says.

Stone's partial list includes the discovery of volcanoes on Jupiter's moon Io; evidence for an ocean beneath the icy surface of Europa; hints of methane rain on Saturn's moon Titan; the crazily-tipped magnetic poles of Uranus and Neptune; icy geysers on Neptune's moon Triton; planetary winds that blow faster and faster with increasing distance from the Sun.

"Each of these discoveries changed the way we thought of other worlds," says Stone.

This graphic, based on data from NASA's Voyager spacecraft, shows a model of what our solar system looks like to an observer outside in interstellar space, watching our solar system fly towards the observer. The colors map the intensity of the magnetic field around our solar system, with red indicating the highest intensity field and blue indicating the lowest intensity field. The thick red line shows the recent trajectory of Voyager 1. The thick magenta line shows the recent trajectory of Voyager 2.Credit: NASA/JPL/BU
In 1980, Voyager 1 used the gravity of Saturn to fling itself slingshot-style out of the plane of the Solar System. In 1989, Voyager 2 got a similar assist from Neptune. Both probes set sail into the void.

Sailing into the void sounds like a quiet time, but the discoveries have continued.

Stone sets the stage by directing our attention to the kitchen sink. "Turn on the faucet," he instructs. "Where the water hits the sink, that's the Sun, and the thin sheet of water flowing radially away from that point is the solar wind. Note how the Sun 'blows a bubble' around itself."

There really is such a bubble, researchers call it the "heliosphere," and it is gargantuan. Made of solar plasma and magnetic fields, the heliosphere is about three times wider than the orbit of Pluto. Every planet, asteroid, spacecraft, and life form belonging to our solar system lies inside.

The Voyagers are trying to get out, but they're not there yet. To locate them, Stone peers back into the sink: "As the water [or solar wind] expands, it gets thinner and thinner, and it can't push as hard. Abruptly, a sluggish, turbulent ring forms. That outer ring is the heliosheath--and that is where the Voyagers are now."

The heliosheath is a very strange place, filled with a magnetic froth no spacecraft has ever encountered before, echoing with low-frequency radio bursts heard only in the outer reaches of the Solar System, so far from home that the Sun is a mere pinprick of light.

"In many ways, the heliosheath is not like our models predicted," says Stone.

In June 2010, Voyager 1 beamed back a startling number: zero. That's the outward velocity of the solar wind where the probe is now. No one thinks the solar wind has completely stopped; it may have just turned a corner. But which way? Voyager 1 is trying to figure that out through a series of "weather vane" maneuvers, in which the spacecraft turns itself in a different direction to track the local breeze. The old spacecraft still has some moves left, it seems.

The cameras of Voyager 1 on Feb. 14, 1990, pointed back toward the Sun and took a series of pictures of the Sun and the planets, making the first ever "portrait" of our solar system as seen from the outside. Image credit: NASA/JPL


No one knows exactly how many more miles the Voyagers must travel before they "pop free" into interstellar space. Most researchers believe, however, that the end is near. "The heliosheath is 3 to 4 billion miles in thickness," estimates Stone. "That means we'll be out within five years or so."

This graphic shows the relative positions of NASA’s most distant spacecraft in early 2011, looking at the Solar System from the side. Voyager 1 is the most distant spacecraft, about 17.5 billion kilometers (10.9 billion miles) away from the Sun at a northward angle. Pioneer 10, the next most distant, is about 15.4 billion kilometers (9.6 billion miles) away from the Sun on the opposite side of the Solar System. Voyager 2 is about 14.2 billion kilometers (8.8 billion miles) away from the Sun on a southward trajectory, on the same side of the Solar System as Voyager 1. Pioneer 11 is about 12.4 billion kilometers (7.8 billion miles) away from the Sun. New Horizons is about 3 billion kilometers (2 billion miles) away from the Sun, on its way to Pluto. Credit: NASA/JPL-Caltech
There is plenty of power for the rest of the journey. Both Voyagers are energized by the radioactive decay of a Plutonium 238 heat source. This should keep critical subsystems running through at least 2020.

After that, he says, "Voyager will become our silent ambassador to the stars."

Each probe is famously equipped with a Golden Record, literally, a gold-coated copper phonograph record. It contains 118 photographs of Earth; 90 minutes of the world's greatest music; an audio essay entitled Sounds of Earth (featuring everything from burbling mud pots to barking dogs to a roaring Saturn 5 liftoff); greetings in 55 human languages and one whale language; the brain waves of a young woman in love; and salutations from the secretary general of the United Nations. A team led by Carl Sagan assembled the record as a message to possible extraterrestrial civilizations that might encounter the spacecraft.

"A billion years from now, when everything on Earth we've ever made has crumbled into dust, when the continents have changed beyond recognition and our species is unimaginably altered or extinct, the Voyager record will speak for us," wrote Carl Sagan and Ann Druyan in an introduction to a CD version of the record.

Some people note that the chance of aliens finding the Golden Record is fantastically remote. The Voyager probes won't come within a few light years of another star for some 40,000 years. What are the odds of making contact under such circumstances?

On the other hand, what are the odds of a race of primates evolving to sentience, developing spaceflight, and sending the sound of barking dogs into the cosmos?

Expect the unexpected, indeed.


Related Stories

Astrobiology Roadmap Goal 1: Habitable planets

Voyager Crosses the Point of Solar Stillness
The Ever-Changing Edge of the Solar System
Voyager 2 in Trouble?
About Us
Contact Us
Links
Sitemap
Podcast Rss Feed
Daily News Story RSS Feed
Latest News Story RSS Feed
Learn more about RSS
Chief Editor & Executive Producer: Helen Matsos
Copyright © 2014, Astrobio.net