spacer
 
Advanced Search
Astrobiology Magazine Facebook  Astrobiology Magazine Twitter
  
Hot Topic Solar System Earth Geology A New Theory on the Oldest Continents
 
A New Theory on the Oldest Continents
Source: University of Bonn press release
print PDF
Geology
Posted:   03/15/12

Summary: Geologists have developed a new theory for how the earliest continents on Earth were formed. The processes behind continent formation and development on our planet have a profound effect on Earth's climate and the evolution of life as we know it.

Geologists at the Universities of Bonn and Cologne have come up with a new idea as to how the earliest continents were formed

The Earth’s continents 85 million years ago. The different continental distribution would have influenced cloud cover.
The Earth's structure can be compared to an orange: its crust is the peel supported by the Earth's heavy mantle. That peel is made up of a continental crust 30 to 40 kilometers thick. It is much lighter than the thinner oceanic crust and protrudes from the Earth's mantle because of its lower density, like an iceberg in the sea.

"According to the current theory, the first continental crusts were formed when tectonic plates would collide, submerging oceanic crusts into the Earth's mantle, where they would partially melt at a depth of approximately 100 kilometers. That molten rock then ascended to the earth's surface and formed the first continents," says adjunct professor Dr. Thorsten Nagel of the Steinmann Institute of Geosciences at the University of Bonn, lead author of the study. The theory has been supported by the oldest known continental rocks – approximately 3.8 billion years old – found in western Greenland.

Following trace elements

The composition of the continental crust corresponds to a semiliquid version of the oceanic crust melted by 10 to 30 percent of its original state. Unfortunately, the concentrations of the main chemical components in the re-solidified rock do not provide much information about at what depth the fusion occurred.

"In order to find that out, you have to know what minerals the remaining 70 to 90 percent of the oceanic crust consisted of," explains Prof. Dr. Carsten Münker of the Institute of Geology and Mineralogy at the University of Cologne. Researchers from Bonn and Cologne have now analyzed the Greenlandic rocks for different elements occurring at various high concentrations, also know as trace elements.

Associate Professor Dr. Thorsten Nagel (right) and Dr. J. Eli Hoffmann with the oldest rocks in the laboratory. Credit: Volker Lannert / University of Bonn
"Trace elements provide geologists with a window to the origin of continental crust," says Prof. Münker. "With their help, we can identify minerals in the residual rock that were deposited in the depths by the molten rock."

Before the magma separated from the bedrock, the semifluid rock and the leftover solid minerals actively exchanged trace elements. "Different minerals have characteristic ways of separating when trace elements are smelted. In other words, the concentration of trace elements in the molten rock provide a fingerprint of the residual bedrock," explains Dr. Elis Hoffmann from Bonn, coauthor of the study.

The concentration of trace elements in the oldest continental rock allows geoscientists to reconstruct possible bedrock based on their minerals and thus determine at what depth the continental crust originated.

The oceanic crust did not have to descend

A cross section of the planet Earth from crust to core. Credit: World Book illustration by Raymond Perlman and Steven Brayfield, Artisan-Chicago
Using computers, the scientists simulated the composition of bedrock and molten rock that would emerge from partially melting the oceanic crust at various depths and temperatures. They then compared the data calculated for the molten rock with the actual concentration of trace elements in the oldest continental rocks.

"Our results paint a surprising picture," Dr. Nagel reports. "The oceanic crust did not have to descend to a depth of 100 kilometers to create the molten rock that makes up the rocks of the first continents." According to the calculations, a depth of 30 to 40 kilometers is much more probable.

The primeval oceanic crust could have 'oozed' continents

…it could definitely have had the power to do so in the Archean eon. Four billion years ago, the gradually cooling earth was still significantly warmer than it is today. The oceanic crust could have simply 'oozed' continents at the same time that other geological processes were occurring, like volcanism, orogeny, and the influx of water.

"We think it is unlikely that the contents were formed into subduction zones. Whether or not tectonic plates of the primordial Earth had such zones of subsidence is still a matter of debate," says the geologist from Bonn.

Studying the physical processes of Earth and their connection with the planet's environment and biosphere is an important aspect of astrobiology. The formation and development of continents on our planet has had a profound effect on Earth's climate and the evolution of life as we know it.


Related Stories

Astrobiology Roadmap Goal 1: Habitable planets
Astrobiology Roadmap Goal 4: Earth's early biosphere and its environment
Astrobiology Roadmap Goal 5: Evolution, environment and limits of life
Astrobiology Roadmap Goal 6: Life's future on Earth

Did Tectonics Get an Early Start?
How Continents Shaped Civilization
Quartz is Key to Continent Shifts
About Us
Contact Us
Links
Sitemap
Podcast Rss Feed
Daily News Story RSS Feed
Latest News Story RSS Feed
Learn more about RSS
Chief Editor & Executive Producer: Helen Matsos
Copyright © 2014, Astrobio.net