Living Time Capsules

Scientists from the University of California at Riverside the University of Delaware load decontaminated ice into a custom-made chamber for melting.
Credit: University of Delaware

Researchers from the University of Delaware and the University of California at Riverside have thawed ice estimated to be at least a million years old from above Lake Vostok, an ancient lake that lies hidden more than two miles beneath the frozen surface of Antarctica.

The scientists will now examine the eons-old water for microorganisms, and then through novel genomic techniques, try to figure out how these tiny, living "time capsules" survived the ages in total darkness, in freezing cold and without food and energy from the Sun.

"It’s some of the coolest stuff I have ever worked on," said Craig Cary, professor of marine biosciences at UD. "We are going to gain access to the genetics of organisms isolated for possibly as long as 15 million years."

The collaborative research team includes Cary and doctoral student Julie Smith from UD’s College of Marine and Earth Studies; project leader Brian Lanoil, assistant professor of environmental sciences at the University of California at Riverside, and doctoral student James Gosses; and Philip Hugenholtz and postdoctoral fellows Victor Kunin and Brian Rabkin at the U.S. Department of Energy’s Joint Genome Institute.

An artist’s cross-section of Lake Vostok, the largest known subglacial lake in Antarctica. Liquid water is thought to take thousands of years to pass through the lake, which is the size of North America’s Lake Ontario. Click image for larger view.
Credit: Nicolle Rager-Fuller / National Science Foundation

In Lanoil’s laboratory in California, segments of a tube-like ice core were thawed under meticulous, "clean lab" conditions to prevent accidental contamination, a process that required nearly a year of preparation.

"It was very exciting to see the Vostok ice, knowing how old it is and how much it took to get that ice to the lab," Smith said. "The ice core itself was incredibly clear and glasslike, reflecting the light like a prism."

The segments of ice were cut from an 11,866-foot ice core drilled in 1998 through a joint effort involving Russia, France and the United States. The core was taken from approximately two miles below the surface of Antarctica and 656 feet (200 meters) above the surface of Lake Vostok and has since been stored at -35 degrees C at the National Ice Core Laboratory in Denver.

"This ice was once water in the lake that refroze onto the bottom of the ice sheet," Cary explained. "We have no direct samples of the lake itself, only this indirect sampling of the refrozen ice above it because drilling into the lake without taking extensive precautions could lead to the lake’s contamination. The borehole made to collect the ice is filled with a mixture of jet fuel, kerosene, and CFCs to keep it from closing," Cary noted. "Since the lake has not had direct contact with the surface world for at least 15 million years, this would be a contamination of one of the most pristine environments on Earth," he said.

A model of Europa’s interior, including a global ocean. If a 100 kilometer-deep ocean existed below the Europan ice shell, it would be 10 times deeper than any ocean on Earth and would contain twice as much water as Earth’s oceans and rivers combined.
Credit: NASA/JPL

Cary said the decontamination procedure was "the most complicated and complete ever attempted," requiring the use of an isolation chamber for the actual melting, concentration of the meltwater through a special filtering system, use of bleaching solutions for the destruction of any contaminating bacteria or DNA from the outside of the core, and the wearing of sterile jump suits for all of the laboratory personnel, among other measures.

Although other scientific projects have identified the microorganisms living in the Vostok water, they have not revealed what these little one-celled organisms do or how they have become adapted to an environment that is eternally dark, cold and so isolated that food and energy sources are likely rare and hard to come by.

"This research is important because it will give us insight into how microbes can survive in a very energy-limited system," Smith said. She intends to pursue a career in academia after she completes her doctorate at UD’s College of Marine and Earth Studies. Such information could help us understand how life might survive on other planets in the Solar System with much harsher environments than Earth. For instance, scientists believe that Jupiter’s moon Europa may harbor a liquid ocean beneath its icy crust. If so, studying how life can survive in ice and in lakes deep below the surface of Antarctica could yield clues as to how similar ecosystems could develop on Europa.

"Most of our planet is permanently cold and dark, so it makes sense that we should study how life exists under these conditions. In addition, enzymes produced by these microorganisms may be useful in industrial applications down the road," Smith noted.

Lake Vostok is believed to contain water millions of years old, which may be the home of ancient organisms. This hidden body of freshwater is the size of Lake Ontario and is the largest of 70 bodies of water first detected under the polar ice-sheet in the 1970s.
Credit: LDEO Columbia University

The Vostok water contains only between 10-100 microbes per milliliter compared to approximately 1 million microbes per milliliter for most lakes, Cary said.

Novel "whole genome amplification" techniques will be applied, which provide insight into the genetic diversity of a community of organisms when only small numbers of organisms are available.

A veteran of research expeditions around the globe, Cary is an expert on "extremophiles"–organisms that thrive in the harshest environments on the planet, ranging from the dry, frigid desert of Antarctica, to geyser-like hydrothermal vents spewing toxic chemicals from the ocean floor.

In the case of Lake Vostok, scientists speculate that it stays in a liquid state underneath miles of ice due to one of the Earth’s natural "furnaces"–hydrothermal vents. Superheated water erupts from these cracks in the seafloor which form where the plates that form the Earth’s crust pull apart.

"We hope that by being so isolated for millions of years, these microorganisms from Vostok will be able to tell us about their life and conditions through the ages," Cary said.

 

 


Related Web Sites

Probing Arctic Lakes
Swimming a Salty Sea
Drilling Vostok with Radar
Plumbing in Antarctica
Breaking the Ice
Pristine Polar Lakes