Counting Penguins From Space

Michelle LaRue and Claire Porter in Antarctica. Credit: Brent Pellinen

There are twice as many emperor penguins in Antarctica than was previously thought, according to a new study released today by an international team of researchers using high-resolution satellite mapping technology. This first-ever count of an entire species from space provides an important benchmark for monitoring the impact of environmental change on the population of this iconic bird.

Scientists from the University of Minnesota Polar Geospatial Center co-authored the research with partners from the British Antarctic Survey. The research is published in the journal PLoS ONE. In the journal, the scientists describe how they used Very High Resolution (VHR) satellite images to estimate the number of penguins at each colony around the coastline of Antarctica. Using a technique known as pan-sharpening to increase the resolution of the satellite imagery, the science teams were able to differentiate between birds, ice, shadow and penguin poo (guano).

They then used ground counts and aerial photography to calibrate the analysis. These birds breed in areas that are very difficult to study because they are remote and often inaccessible with temperatures as low as -58°F (-50°C).

Lead author and geographer Peter Fretwell at the British Antarctic Survey (BAS), which is funded by the UK’s Natural Environment Research Council, said the research findings are groundbreaking.

Emperor penguins, which are found only in Antarctica, have just been censused by satellite. Credit: Michelle LaRue

"We are delighted to be able to locate and identify such a large number of emperor penguins," Fretwell said. "We counted 595,000 birds, which is almost double the previous estimates of 270,000 to 350,000 birds. This is the first comprehensive census of a species taken from space."

On the ice, emperor penguins with their black and white plumage stand out against the snow and colonies are clearly visible on satellite imagery. This allowed the team to analyze 44 emperor penguin colonies around the coast of Antarctica, with seven previously unknown.

"The methods we used are an enormous step forward in Antarctic ecology because we can conduct research safely and efficiently with little environmental impact, and determine estimates of an entire penguin population," said co-author Michelle LaRue from the University of Minnesota Polar Geospatial Center, which is funded by the U.S. National Science Foundation and is part of the university’s College of Science and Engineering.

"The implications of this study are far-reaching," LaRue added. "We now have a cost-effective way to apply our methods to other poorly-understood species in the Antarctic, to strengthen on-going field research, and to provide accurate information for international conservation efforts."

BAS biologist Phil Trathan and co-author of the study noted the impact this research could have on the changing environment.

In this satellite image from Digital Globe, the emperor penguin colony at Cape Roget appears as a drumstick-shaped smudge on the ice shelf.

"Current research suggests that emperor penguin colonies will be seriously affected by climate change," Trathan said. "An accurate continent-wide census that can be easily repeated on a regular basis will help us monitor more accurately the impacts of future change on this iconic species."

Scientists are concerned that in some regions of Antarctica, earlier spring warming is leading to loss of sea ice habitat for emperor penguins, making their northerly colonies more vulnerable to further climate change.

"Whilst current research leads us to expect important declines in the number of emperor penguins over the next century, the effects of warming around Antarctica are regional and uneven," Trathan said. "In the future we anticipate that the more southerly colonies should remain, making these important sites for further research and protection."

This research is a collaboration between British Antarctic Survey, University of Minnesota/National Science Foundation, Scripps Institution of Oceanography and the Australian Antarctic Division.

To read the entire research paper in the PLoS ONE journal, visit http://z.umn.edu/penguin12.