Sifting Good Martian Trash

opportunity_heat_shield
Heat shield debris from Opportunity’s descent and landing. Click image for larger view.
Credit:NASA/ JPL

The image (right) from the panoramic camera on NASA’s Mars Exploration Rover Opportunity features the remains of the heat shield that protected the rover from temperatures of up to 2,000 degrees Fahrenheit as it made its way through the martian atmosphere. This two-frame mosaic was taken on the rover’s 335th martian day, or sol, (Jan. 2, 2004).

The view is of the main heat shield debris seen from approximately 10 meters (about 33 feet) away from it. Many rover-team engineers were taken aback when they realized the heat shield had inverted, or turned itself inside out. The height of the pictured debris is about 1.3 meters (about 4.3 feet). The original diameter was 2.65 meters (8.7 feet), though it has obviously been deformed. The Sun reflecting off of the aluminum structure accounts for the vertical blurs in the picture.

The fact that the heat shield is now inside out makes it more challenging to evaluate the state of the thermal protection system that is now on the inside. In coming sols, Opportunity will investigate the debris with its microscopic imager.

Engineers who designed and built the heat shield are thrilled to see the hardware on the surface of Mars. This provides a unique opportunity to look at how the thermal protection system material survived the actual Mars entry. Team members hope this information will allow them to compare their predictions to what really happened.

Rover team members hope to determine how deeply the atmospheric friction charred the protective layer. "With luck, our observations may help to improve our ability to deliver future vehicles to the surface of other planets," said JPL’s Jim Erickson, rover project manager.

After NASA’s Mars Exploration Rover Opportunity finishes examining its heat shield, the rover team plans to direct Opportunity southward toward a round feature dubbed "Vostok," about 1.2 kilometers (three-fourths of a mile) away. The plan is to check out small craters along the way.

The rovers successfully completed their three-month primary missions in April. They astound even their designers with how well they continue operating. The unanticipated longevity is allowing both rovers to reach additional destinations and to keep making discoveries. Spirit landed on Jan. 3 and Opportunity Jan. 24, 2004, respectively.

opportunity_meteor
Strange rock near Opportunity’s current location outside Endurance Crater may be a meteor of non-Martian origin. Scientists are speculating about its possible history since the porousity appears out of place in the flat plains. Click image for larger view.
Credit:NASA/ JPL

"You could have cut the tension here with a knife the night Spirit landed," said NASA Administrator Sean O’Keefe. "Just remembering the uncertainty involved with the landing emphasizes how exciting it is for all of us, since the rovers are still actively exploring. The rovers created an amazing amount of public interest and have certainly helped advance the Vision for Space Exploration," he said. The twin Mars explorers have drawn the most hits to NASA Web sites — more than 9 billion in 2004.

Dr. Charles Elachi, director of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., said, "Little did we know a year ago that we’d be celebrating a year of roving on Mars. The success of both rovers is tribute to hundreds of talented men and women who have put their knowledge and labor into this team effort."

"The rovers are both in amazingly good shape for their age," said Erickson. "The twins sailed through the worst of the martian winter with flying colors, and spring is coming. Both rovers are in strong positions to continue exploring, but we can’t give you any guarantees."

Spirit is exploring the Columbia Hills within the Gusev Crater. "In December, we discovered a completely new type of rock in Columbia Hills, unlike anything seen before on Mars," said Dr. Steve Squyres of Cornell University, Ithaca, N.Y., principal investigator for the rovers’ science payloads.

Jumbled textures of specimens dubbed "Wishstone" and "Wishing Well" look like the product of an explosion, perhaps from a volcano or a meteor impact. These rocks are much richer in phosphorus than any other known Mars rocks. "Some ways of making phosphates involve water; others do not," Squyres said. "We want to look at more of these rocks to see if we can distinguish between those possible histories."

mars_grind
Opportunity’s size dominates crater. Within thirty feet was bedrock. Click image for larger view.
Credit:NASA/JPL/ MSSS

NASA’s next Mars mission, the Mars Reconnaissance Orbiter, is due to launch in August. "As great as the past year has been, Mars launch opportunities come along like clockwork every 26 months," said Dr. Firouz Naderi of JPL, manager of NASA’s Mars Exploration Program. "At every one of them in the foreseeable future, we intend to go to Mars, building upon the findings by the rovers."

NASA Chief Scientist Dr. Jim Garvin said, "Mars lures us to explore its mysteries. It is the most Earth-like of our sister planets, and many believe it may hold clues to whether life ever existed or even originated beyond Earth. The rovers have shown us Mars had persistently wet, possibly life-sustaining environments. Beyond their own profound discoveries, the rovers have advanced our step-by-step program for examining Mars. We will continue to explore Mars robotically, and eventually with human explorers."

 


MER flight planning chronicled in the diary of the principal investigator for the science packages, Dr. Steven Squyres: Parts 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 .

Related Web Pages

Steve Squyres
Cornell Mars Site
Mars Exploration Rovers, JPL
NASA’s RATs Go Roving on Mars
Water Signs
Microscopic Imager
Gusev Crater
Pancam- Surveying the Martian Scene
Mössbauer spectrometer
Alpha Proton X-ray Spectrometer