New theory proposes explanation for how vertebrates evolved

Image: Wikipedia

Image: Wikipedia

A new theory aims to explain how the complex vertebrate body, with its skeleton, muscles, nervous and cardiovascular systems, arises from a single cell during development and how these systems evolved over time. The theory, called embryo geometry, is the culmination of nearly 20 years of work by a team of researchers and science illustrators.

The new theory is published along with illustrations – or “blueprints” – depicting how it applies to different vertebrate organ systems in Progress in Biophysics & Molecular Biology.

According to Neo-Darwinian theory, major evolutionary changes occur as a result of the selection of random, fortuitous genetic mutations over time. However, some researchers say this theory does not satisfactorily account for the appearance of radically different life forms and their rich complexity, particularly that observed in vertebrates like humans.

Embryo geometry, developed by a team from the University of San Diego, Mount Holyoke College, Evergreen State College, and Chem-Tainer Industries, Inc.. in the USA, looks at animal complexity generally and the vertebrate body in particular as more the products of mechanical forces and the laws of geometry than solely the outcome of random genetic mutation.

Credit: Peter Sheesly

Credit: Peter Sheesly

“Embryo Geometry represents a major game changer, in that it challenges the bottom-up dogma of evolutionary biology by suggesting that, in fact, top-down mechanical forces and geometric principles play a central role in determining animal shape,” said study co-author David Edelman.

Anatomists have long postulated that animal complexity arises during development of the embryo – called embryogenesis – but despite detailed descriptions of the embryonic stages of all major types of animal, the evolution of organismal complexity and its expression during individual development have remained mysterious processes – until now.

The researchers behind embryo geometry have shown that the vertebrate embryo could conceivably arise from mechanical deformation of the blastula, a ball of cells formed when the fertilized egg divides. As these cells proliferate, the ball increases in volume and surface area, altering its geometry. The theory posits that the blastula retains the geometry of the original eight cells produced by the first three divisions of the egg, which themselves determine the three axes of the vertebrate body.

In their new paper, they present 24 schematic figures – or “blueprints” – showing how the musculoskeletal, cardiovascular, nervous, and reproductive systems form through mechanical deformation of geometric patterns. These illustrations explain how the vertebrate body might plausibly arise from a single cell, both over evolutionary time, and during individual embryogenesis.

Publication of press-releases or other out-sourced content does not signify endorsement or affiliation of any kind.