The World Above and Beyond

Categories: Feature Stories Mars

Sun’s role in Mars’ missing atmosphere probed by satellite MAVEN

Artist impression of the MAVEN spacecraft. Credit: NASA

It’s almost five times easier to leave Mars than it is to leave Earth or Venus.

At least, that’s the case for many particles in the upper atmosphere. Mars’ upper atmosphere is swarming with atoms, ions and molecules actively exiting the planet’s sphere of influence. The Mars Atmosphere and Volatile EvolutioN (MAVEN) satellite is headed there to discover why.

“The basic goal of MAVEN is to understand what happened to the atmosphere of Mars,” said Davin Larson, scientific lead for one of the MAVEN instruments. “It’s not understood where the oceans and the atmosphere went to. It could have been absorbed into the regolith sank down into the dirt but it’s pretty well accepted that Mars itself couldn’t hide the entire atmosphere, and that most of it escaped.”

An atmosphere cannot engineer its own exit. Once an atom, ion or molecule has been captured from space or created in situ, securing release from the planet’s sphere of influence typically requires an accomplice. The usual suspect in these cases is the Sun.

The EUV sensor. Credit: Courtesy of JPL

One mechanism of freeing a captive particle is called Jeans escape. Jeans escape has nothing to do with clothing. It has everything to do with a molecule moving just fast enough to drift away. Jeans escape happens when a planetary atmosphere is heated, often by solar events. Particles that were previously content to hang around begin moving so fast that they attain escape velocity.

Another scenario of loss is photoionization. In this case, fast-moving photons from the Sun knock electrons off atmospheric particles. The affected particles then carry a positive charge. Once particles carry a charge, they are more likely to get caught in magnetic fields or picked up by the solar wind and blown away.

In the meanwhile, the newly liberated electrons bounce around and break up other molecules. This process is known as dissociation. Dissociation can result from native Martian electrons bouncing around or directly from the solar wind. Every day, the solar wind’s ions and radiation belts knock the atmosphere away, particle by particle, in a process called sputtering.

Sputtering, dissociation, photoionization, and Jeans escape: any of these mechanisms can cause loss in the ionosphere, or upper atmosphere. This in turns leads to the slow bleeding away of the lower atmosphere. In the absence of a protective magnetic field, these escape phenomena lead to atmospheric loss on a grand scale. 3.8 billion years after losing its planet-wide magnetosphere, we on Earth posit that the disappearance of Mars’ air and oceans to have been largely driven by the Sun.

Measuring the loss

The Solar Wind Electron Analyzer or SWEA. Credit: Courtesy of LASP

To examine our hypothesis, MAVEN has been equipped with four sensors that measure every aspect of the solar input. Three of them have the word ‘solar’ in the title: the Solar Wind Electron Analyzer (SWEA), the Solar Energetic Particles (SEP), and the Solar Wind Ion Analyzer (SWIA). Dr. Larson, mentioned above, is the science lead on SEP, an instrument named after what it detects.

Solar energetic particles (SEPs), according to Dr. Larson, “are one form of energy that can ionize and heat the gas in the upper atmosphere of Mars.” SEPs can arrive as part of large and small events. Small events would be SEPs blown by a light solar wind. Large events launch SEPs directly from the surface of the sun. Small SEP events might only sputter away molecules in the upper ionosphere, close to the boundary with space. During bigger events, SEPs can act like powerful cosmic rays and plow through everything in their path.

“The more energetic the particle, the deeper it tends to get into the atmosphere,” said Larson. “There is more ionization, more excitation, more sputtering, more heating of the atmosphere.”

Heating of the atmosphere gives rise to Jeans escape, which will be observed by other MAVEN instruments. Meanwhile, SEP the instrument sits on either side of the satellite’s central disk. Poised at the lower margin, the SEP sensors watch patiently for the interplanetary particles that create dissociation, ionization and sputtering.

Eye of an insect

On the other side of MAVEN’s golden body, protruding 1.5 meters into space, is another Solar Package instruments: SWEA. With its glistening black patina and thatched circular grating, SWEA resembles the eye of a large insect.

Solar Wind Ion Analyzer or SWIA. Credit: Courtesy of LASP

“There are actually two concentric bug-eye grids,” said David Mitchell, SWEA’s science lead, “The instrument places a voltage across the inner and outer grids to decelerate incoming electrons without altering their trajectories.”

Once electrons enter the eye, an internal electric field slows them down so SWEA can observe them. SWEA establishes which way the electrons were going and how quickly, and determines if those electrons originated in the Sun or are native to Mars. In this way, it can read the solar wind’s speed and direction of the ionosphere, where particles from the Sun and Mars continually interplay, and contributing to sputtering the atmosphere away. The solar wind itself is the object of yet another instrument’s examination. With its sensor always turned towards the Sun, Solar Wind Ion Analyzer will measure the speed, contents, temperature and density of the solar wind.

“SWIA is built and designed to measure the incoming solar wind ions, both upstream and after the encounter the magnetosphere of Mars,” said SWIA principal investigator Jasper Halekas, “These ions provide an important energy input to the magnetosphere of Mars, and may help determine how much of Mars’ atmosphere ultimately escapes.”

Forming a plasmasphere

Around the atmosphere of any planet, electrons liberated by photo-ionization can form a free-flowing cloud around called a plasmasphere. Mars’ plasmasphere rotates independently from the planet, almost wrapping around it at times. Blobs of plasma trail behind Mars like two tails, blown there by the steady solar wind. The tails trail further and further behind Mars and are eventually lost to space.

While the solar wind’s ions and electrons tend to remain in high altitudes near the plasmasphere, photons in the extreme ultraviolet part of the spectrum can ionize atmospheric particles all the way down to the ground. Extreme UV (EUV) radiation may be why Mars has too many heavy isotopes of elements like hydrogen and carbon, and too little air and water. In breaking part chemical bonds, EUV may have played a part in helping the lighter bit of H2O and CO2 break away and escape.

Loss of Ionosphere and formation of the plasmasphere. Credit: Courtesy of NASA/LASP

“Knowing the amount of EUV going into an atmosphere and how that EUV varies lets scientists understand the temperature, ionization, composition, and escape rates from that atmosphere,” said Frank Eparvier, EUV instrument lead.

By measuring the extreme UV in Mars’ atmosphere today, and adding in data about the number of ionized molecules and their rates of escape, we may deduce how much water and carbon dioxide existed on Mars four billions years ago.

Like SEP, the EUV sensors are so-called because that’s what they detect. The EUV sensors sit anchored at the bottom of two 7-meter booms. Their presence there rounds out observations of incoming solar particles in the upper atmosphere. SWIA watches the solar wind. SWEA sorts solar electrons, counting how many charges stick Mars’ atmosphere, and how deep into they penetrate. SEP detects ionizing particles and EUV senses ionizing radiation all through the upper atmosphere, brought to Mars largely by coronal mass ejections (CMEs).

CMEs, SEPs and solar wind have each played a part in divesting Mars of its atmosphere over the last 4 billion years. With its Sun, solar wind and storms instruments, MAVEN will tell us how much of each is occurring and where. Coupled with measurements from the five other instruments on board, by this time next year we’ll have a more complete picture of what’s entering in and leaving the ionosphere. We’ll have a better idea of what happened to 85 to 95 percent of Mars’ original atmosphere, which likely supported rivers, lakes and shallow oceans. Above all, for the first time ever, we’ll know much energy it takes to strip away the sky.

Funding by LASP, Goddard and University of California, Berkeley, Space Sciences Laboratory